Skip to content Skip to sidebar Skip to footer

Continuous wave Lasing in an Organic “inorganic Lead Halide Perovskite Semiconductor

Abstract

Hybrid organic–inorganic perovskites have emerged as promising gain media for tunable, solution-processed semiconductor lasers. However, continuous-wave operation has not been achieved so far1,2,3. Here, we demonstrate that optically pumped continuous-wave lasing can be sustained above threshold excitation intensities of ~17 kW cm–2 for over an hour in methylammonium lead iodide (MAPbI3) distributed feedback lasers that are maintained below the MAPbI3 tetragonal-to-orthorhombic phase transition temperature of T ≈ 160 K. In contrast with the lasing death phenomenon that occurs for pure tetragonal-phase MAPbI3 at T > 160 K (ref. 4), we find that continuous-wave gain becomes possible at T ≈ 100 K from tetragonal-phase inclusions that are photogenerated by the pump within the normally existing, larger-bandgap orthorhombic host matrix. In this mixed-phase system, the tetragonal inclusions function as carrier recombination sinks that reduce the transparency threshold, in loose analogy to inorganic semiconductor quantum wells, and may serve as a model for engineering improved perovskite gain media.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

  • Plasmonic–perovskite solar cells, light emitters, and sensors

    Microsystems & Nanoengineering Open Access 12 January 2022

  • Crystallization of CsPbBr3 single crystals in water for X-ray detection

    Nature Communications Open Access 09 March 2021

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Sutherland, B. R. & Sargent, E. H. Perovskite photonic sources. Nat. Photon. 10, 295–302 (2016).

    ADS  Article  Google Scholar

  2. Veldhuis, S. A. et al. Perovskite materials for light‐emitting diodes and lasers. Adv. Mater. 28, 6804–6834 (2016).

    Article  Google Scholar

  3. Xing, G. et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat. Mater. 13, 476–480 (2014).

    ADS  Article  Google Scholar

  4. Jia, Y. et al. Diode-pumped organo-lead halide perovskite lasing in a metal-clad distributed feedback resonator. Nano Lett. 16, 4624–4629 (2016).

    ADS  Article  Google Scholar

  5. Samuel, I. D. W. & Turnbull, G. A. Organic semiconductor lasers. Chem. Rev. 107, 1272–1295 (2007).

    Article  Google Scholar

  6. Chénais, S. & Forget, S. Recent advances in solid-state organic lasers. Polym. Int. 61, 390–406 (2012).

    Article  Google Scholar

  7. Giebink, N. C. & Forrest, S. R. Temporal response of optically pumped organic semiconductor lasers and its implication for reaching threshold under electrical excitation. Phys. Rev. B 79, 073302 (2009).

    ADS  Article  Google Scholar

  8. Zhang, Y. & Forrest, S. R. Existence of continuous-wave threshold for organic semiconductor lasers. Phys. Rev. B 84, 241301 (2011).

    ADS  Article  Google Scholar

  9. Sandanayaka, A. S. D. et al. Toward continuous-wave operation of organic semiconductor lasers. Sci. Adv. 3, e1602570 (2017).

    ADS  Article  Google Scholar

  10. Fan, F. et al. Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy. Nature 544, 75–79 (2017).

    ADS  Article  Google Scholar

  11. Grim, J. Q. et al. Continuous-wave biexciton lasing at room temperature using solution-processed quantum wells. Nat. Nanotech. 9, 891–895 (2014).

    ADS  Article  Google Scholar

  12. Yang, Z., Pelton, M., Fedin, I., Talapin, D. V. & Waks, E. A room temperature continuous-wave nanolaser using colloidal quantum wells. Nat. Commun. 8, 143 (2017).

    ADS  Article  Google Scholar

  13. Blood, P. Quantum Confined Laser Devices: Optical Gain and Recombination in Semiconductors (Oxford Univ. Press, Oxford, 2015).

  14. Kozlov, V. G. et al. Study of lasing action based on Forster energy transfer in optically pumped organic semiconductor thin films. J. Appl. Phys. 84, 4096–4108 (1998).

    ADS  Article  Google Scholar

  15. Xiao, Z. et al. Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites. Nat. Photon. 11, 108–108 (2017).

    ADS  Article  Google Scholar

  16. Kogelnik, H. & Shank, C. V. Coupled-wave theory of distributed feedback lasers. J. Appl. Phys. 43, 2327–2335 (1972).

    ADS  Article  Google Scholar

  17. Andrew, P., Turnbull, G. A., Samuel, I. D. W. & Barnes, W. L. Photonic band structure and emission characteristics of a metal-backed polymeric distributed feedback laser. Appl. Phys. Lett. 81, 954–956 (2002).

    ADS  Article  Google Scholar

  18. Wehrenfennig, C., Liu, M., Snaith, H. J., Johnston, M. B. & Herz, L. M. Charge carrier recombination channels in the low-temperature phase of organic-inorganic lead halide perovskite thin films. APL Mater. 2, 081513 (2014).

    ADS  Article  Google Scholar

  19. Osherov, A. et al. The impact of phase retention on the structural and optoelectronic properties of metal halide perovskites. Adv. Mater. 28, 10757–10763 (2016).

    Article  Google Scholar

  20. Panzer, F. et al. Reversible laser-induced amplified spontaneous emission from coexisting tetragonal and orthorhombic phases in hybrid lead halide perovskites. Adv. Opt. Mater. 4, 917–928 (2016).

    Article  Google Scholar

  21. Kong, W. et al. Characterization of an abnormal photoluminescence behavior upon crystal-phase transition of perovskite CH3NH3PbI3. Phys. Chem. Chem. Phys. 17, 16405–16411 (2015).

    Article  Google Scholar

  22. Dobrovolsky, A., Merdasa, A., Unger, E. L., Yartsev, A. & Scheblykin, I. G. Defect-induced local variation of crystal phase transition temperature in metal-halide perovskites. Nat. Commun. 8, 34 (2017).

    ADS  Article  Google Scholar

  23. Neutzner, S., Kandada, A. R. S., Lanzani, G. & Petrozza, A. A dual-phase architecture for efficient amplified spontaneous emission in lead iodide perovskites. J. Mater. Chem. C 4, 4630–4633 (2016).

    Article  Google Scholar

  24. Onoda-Yamamuro, N., Matsuo, T. & Suga, H. Dielectric study of CH3NH3PbX3 (X = Cl, Br, I). J. Phys. Chem. Sol. 53, 935–939 (1992).

    ADS  Article  Google Scholar

  25. Chen, T. et al. Rotational dynamics of organic cations in the CH3NH3PbI3 perovskite. Phys. Chem. Chem. Phys. 17, 31278–31286 (2015).

    Article  Google Scholar

  26. Wang, T. et al. Indirect to direct bandgap transition in methylammonium lead halide perovskite. Energy Environ. Sci. 10, 509–515 (2017).

    Article  Google Scholar

  27. Marongiu, D. et al. Self-assembled lead halide perovskite nanocrystals in a perovskite matrix. ACS Energy Lett. 2, 769–775 (2017).

    Article  Google Scholar

  28. Byun, J. et al. Efficient visible quasi-2D perovskite light-emitting diodes. Adv. Mater. 28, 7515–7520 (2016).

    Article  Google Scholar

  29. Yuan, M. et al. Perovskite energy funnels for efficient light-emitting diodes. Nat. Nanotech. 11, 872–877 (2016).

    ADS  Article  Google Scholar

Download references

Acknowledgements

This work was supported in part by the Air Force Office of Scientific Research Young Investigator Program under award no. FA-9550-14-1-0301 and by the National Science Foundation under grant no. DMR-1654077. R.A.K. and B.P.R. acknowledge support from a DARPA Young Faculty Award, #D15AP00093 and ONR Young Investigator Program (award #N00014-17-1-2005).

Author information

Authors and Affiliations

Contributions

Y.J. fabricated the gratings, carried out the laser measurements and performed the data analysis. R.A.K. developed the perovskite processing and deposition method and A.J.G. carried out the transient absorption measurements. B.P.R. and N.C.G. supervised the work. All authors contributed to writing the manuscript.

Corresponding author

Correspondence to Noel C. Giebink.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jia, Y., Kerner, R.A., Grede, A.J. et al. Continuous-wave lasing in an organic–inorganic lead halide perovskite semiconductor. Nature Photon 11, 784–788 (2017). https://doi.org/10.1038/s41566-017-0047-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI : https://doi.org/10.1038/s41566-017-0047-6

This article is cited by

  • Plasmonic–perovskite solar cells, light emitters, and sensors

    • Bin Ai
    • Ziwei Fan
    • Zi Jing Wong

    Microsystems & Nanoengineering (2022)

  • Embedding laser generated GaAs nanocrystals in perovskite wires for enhanced charge transport and photodetection

    • Hang Guo
    • Yu Tong
    • Hongqiang Wang

    Science China Physics, Mechanics & Astronomy (2022)

  • Colloidal quantum dot lasers

    • Young-Shin Park
    • Jeongkyun Roh
    • Victor I. Klimov

    Nature Reviews Materials (2021)

  • Prospects and challenges of colloidal quantum dot laser diodes

    • Heeyoung Jung
    • Namyoung Ahn
    • Victor I. Klimov

    Nature Photonics (2021)

  • Crystallization of CsPbBr3 single crystals in water for X-ray detection

    • Jiali Peng
    • Chelsea Q. Xia
    • Qianqian Lin

    Nature Communications (2021)

dumontabless.blogspot.com

Source: https://www.nature.com/articles/s41566-017-0047-6/

Post a Comment for "Continuous wave Lasing in an Organic “inorganic Lead Halide Perovskite Semiconductor"